Fundamentals of Object Oriented Programming - Polymorphism -
Polymorphism

Polymorphism (including polymorphism, Greek: diversity, adaptability) means that the type of an object reference to a related class type transformed (converted) can be.The behavior and properties of the object appearing through the new class type "filtered" - namely that determined by its class type, the attributes and methods of the original class type after conversion may still be used.

Background: It is known that all objects (self defined) related to each other by the tree-like Java class hierarchy in the end.They can be traced back to the top object class, which crowns the hierarchy tree. In an upcast to Object prototype individual object properties are no longer accessible, but will remain hidden.But they occur again in evidence when the object is converted back to its original type (see below).

Principles of type conversion

Thus, polymorphism is properly understood, the following basic requirements must be considered:

1 In Java, objects are always addressed by their names. However, the name is not identical to the actual object, and it contains especially not the object data.The name is nothing but a reference variable that points to the memory address at which the actual object data (attributes) are stored.

 [image: image26.png]In der Programmierung spielt der Typ der Referenzvariablesine entscheidende Rolle,
denn er bestimmt die Nutzbarkeities objekts

2 Any type of change always relates only to the reference variable, not on the object type is immutable standard by its constructor.Individual data and methods for a type conversion on the new reference type does not any more, if they are not defined in the new type. However, the properties are still unchanged when the object and can return for a conversion (see below: downcast) can be used again.

A reference variable thus represents something of a type filter that affects the view of the object. Type conversion means so that the object changed (limited) appears.

Importance of the type of membership

As in Java, each object is accessed via a reference, it has basically two class membership (types): the type of his name (the reference variable) and the type of its constructor.

One employee = new Employee (...);
[image: image1.png]Objekt
(Daten)

DerName eines Objektsist (nur) ein Zeiger auf die Objekt-Daten

Normally, these two types are identical. However, this is not mandatory, but they can also be quite different. Here the rule is that the reference variable can be of a higher type always while calling the constructor of a derived class.

 Object two = new Employee (...);

(This configuration is detailed in the following chapter)
[image: image25.png]Der Konstruktoraufruf legt den (unverénderlichen) Objekttyp fest.
Der Referenztyp legt fest, wie das Objekt gesehen bzw, angesprochen wird.

Although the "real" object is not affected by a type conversion into reality - it remains true to its original class always true - it must be remembered that the reference variable (object) in a particular program is the only way to access the contents of an object. An object can always be reached via his (type-bound) name. Therefore the type of the reference variable determines which attributes and methods of an object are currently visible and accessible.

 [image: image2.png]

[image: image3.png]Referenztyp

[image: image4.png]

 [image: image5.png]

[image: image6.png]Daten
Daten
Daten
Daten

 [image: image7.png]Der Typ der Referenzvariablen bestimmt,
welche Objektdaten sichtbar” sind.

Spend correct object type

Often it is important to know the original object type (the type of the constructor).This is for example necessary before a reverse conversion takes place (see below). There are several approaches.

1 The getClass () method is an object method, which returns the class type of the object pointed to by the reference variable.

Object one = new employee);
 Object two = new Worker ();

System.out.println (eins. getClass ()) / / employee
System.out.println (two. getClass ()) / / worker

 [image: image8.png]classAngestellter
classArbeiter

2 The output can be further processed as a string if the method getName () is appended:

Object one = new employee);
 Object two = new Worker ();

System.out.println (eins. getClass () getName ().);
System.out.println (two. getClass () getName ().);

 [image: image9.png]Angestellter
Arbeiter

3 The toString () method is also the type of object (constructor type), but together with the hash code of the object.

 Object one = new employee);
 Object two = new Worker ();

System.out.println (one toString ().);
System.out.println (two toString ().);

 [image: image10.png]Angestellt@n16869
Arbeit@cdel00

4 The instanceof operator not a part of the Object class, but for the defined scope of the Java language.It has the disadvantage that it does not distinguish between the reference type and the actual type of object. In fact, he is a true value for both types:

 Object one = new employee);
 Object two = new Worker ();

if (one instanceof Object)
 ("Is one instanceof Object") out.println;

if (one instanceof Employee)
 Out.println ("one is instanceof Employee");

if (one instanceof Worker)
 Out.println ("one is instanceof workers");

 [image: image11.png]"einsistinstanceoBbject"
"einsistinstanceofngestellter"

Insert: "Flat copy"

In general, a type conversion is done by manipulating the reference variables using an assignment operation (=).Since there are pointers in object names, this is no real object data is assigned, only the addresses of existing objects (namely, the contents of the reference variable). It is a shallow copy.

 [image: image12.png]

[image: image13.png]new Angestellter ()

 [image: image14.png]

 [image: image15.png]

[image: image16.png]new Angestellter ()

 [image: image17.png]

 [image: image18.png]

 [image: image19.png]

[image: image20.png]new Angestellter ()

 [image: image21.png]

 [image: image22.png]

 [image: image23.png]

[image: image24.png]

After assigning the left-reference variable contains the same address as the rightmost reference variable - both names refer to the same object. The original object of the left reference variables will be lost if no prior backup has been performed.
Page 4
