Fundamentals of Object Oriented Programming - Inheritance -
 
 
Importance of access identifiers in inheritance
 
 
 
The Attributes of a subclass are to some extent inherited copies of the attributes of the base class. They have the same name and data type and therefore need not be declared again. Inherited attributes can be used, as they were defined in the subclass. The "anonymous object" represents the basic characteristics.
 
In the inheritance of attributes, however, the access identifier specified in the base class play a crucial role.These determine how the attribute can be used in the subclass. 
 
1 Attributes that were declared in the superclass without access markup are passed directly on to the sub-class and can be used there as if they were declared in the sub-class.They behave just like attributes that are marked as public.Public attributes are not protected against access from outside the class.
 
2 Attributes that are marked as private can not be readily used in the derived subclass.There is no way to get from the subclass to them, except through access methods in the super class.
 
3 Attributes that are marked as protected, can be used in the derived class and in packages to which they belong.First, there is no essential difference to public.
 
 
 
Examples of inheritance of attributes
 
In the following Java program examples, the practical use of class inheritance is shown. Base class is the class of employees, defined in the general properties of a corporate employee are (employee number, name, social security number).Derived from this class is the employee that contains the special attributes of the group of employees (salary). 
 
 
Example 1: Simple inheritance of attributes
 
In main, an employee is created: access to all attributes (including those declared in the base class employees) via this object. It can be treated as the attributes of the superclass, as if they were declared in the subclass. (This works because all attributes not marked are public).
 
 
 
 
 
/ / BASE CLASS / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
 
class Employee {
 
    static int objektZaehler;
    int EmployeeID;                             / / Basic attributes
    String name;
    String versNr;
}
 
/ / DERIVED CLASS / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
 
class Employee extends employee {
 
double salary; / / attribute of its own
}
 
/ / Executive class with main / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
 
class {BasisTest00
 
    public static void main (String [] a) {
 
        One employee = new Employee ();
 
        eins.name = "Smith";
System.out.println (eins. name); / / print inherited attribute
        Eins.gehalt = 3000;
/ / Output attribute of its own; System.out.println (eins. content)
 
         }    
}
 
 
 
 
 
EXAMPLE 2: Inheritance with two subclasses and constructors
 
In the second example, two subclasses of the superclass employees are derived. The subclasses employees and workers have attributes that are inherited from the superclass (name, social security number) and beyond their own attributes (salary orWage). All attribute values ​​(base classes and subclasses attributes) can be assigned to each constructor in the subclass.The parent class has no constructor.
 
 
 
 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / BASE CLASS
 
class Employee {
 
    static int objektZaehler;  
 
EmployeeID int / / base attributes
String name;
String versNr;
}
 
 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / DERIVED CLASS 1
 
class Employee extends employee {
 
double salary; / / private attribute of the subclass
 
    / / Constructor:
public Employee (String name1,
                        String versNr1, 
                        double gehalt1) {
        name = name1; / / inherited attribute
        versNr = versNr1 / / inherited attribute
        EmployeeID = objektZaehler + + / / inherited attribute
        salary = gehalt1 / / attribute of its own
 
        System.out.println ("Employee:" + name);
        System.out.println ("EmployeeID:" + EmployeeID);
        System.out.println ("Versich Number:" + versNr);
        System.out.println ("Salary:" + content + "\ n");
    } 
}
 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / Derived class 2
 
class Worker extends Employee {
 
double wages; / / private attribute of the subclass
 
    / / Constructor:
public Worker (string name1,
                     String versNr1, 
                     double lohn1) {
 
        name = name1; / / inherited attribute
        versNr = versNr1 / / inherited attribute
        EmployeeID = objektZaehler + + / / inherited attribute
        rewarding lohn1 = / / attribute of its own
 
        System.out.println ("Worker:" + name);
        System.out.println ("EmployeeID:" + EmployeeID);
        System.out.println ("Versich Number:" + versNr);
        System.out.println ("worthwhile:" + salary + "\ n");
    } 
}
 
/ / Executive class with main
 
class {BasisTest01
 
    public static void main (String [] a) {
 
        One employee = new Employee ("Mueller" 
                                             "3-456-3 km", 2000);
        Two workers = new Worker ("Schaffer" 
                                         "Arb-34-25-56", 1000);
 
    }    
}
 
 
Page 3
