Fundamentals of Object Oriented Programming - Association

Association

The association is a basic form of all class relations - it can be defined as a conscious link between type produced moderately different classes. Associations are required in almost every program when it comes to different classes combine together to implement a particular class model - for example, customer address bills.

Associations also be used in contexts other programming. They correspond, for example, the relations between database tables (ERM: Entity Relationship Model).

 Principle applies to types of associations that they are defined at the class level and then apply for all objects.

 There is no special Java keyword for generating associations, but they must be implemented by custom code.

An association can be called "horizontal" or described as "having" relationship, which requires essentially no consistent relationship between the classes involved. An association is implemented when it is necessary for practical reasons to implement the use case.

One can distinguish different types of associations. An association's first ever one-sided: there is a main class (primary class) and a minor class (secondary class). The two classes involved are not equal, but rather there is a unique function roles. The main class "has" or "possesses" the minor class, subsidiary class "white", however, none of the main class. The role distribution in a specific application must be determined individually.

1 Unilateral simple association

The primary object has just a secondary object and can access its attributes (if necessary, by appropriate access methods). The secondary object, however, does not know the primary object, and can not rely on this.

 [image: image6.png]KUNDE

ADRESSEad
Rechmng[3] rechn
into

Kune()
adr = new ADRESSE(),
achinenew RECHNUNGL

t

ADRESSE

! hat
| mehrere

stringort;
Stringtrae,
inttel

ApREssE(
et
)

KundenTest
main){

Kundek= new Kund()

RECHNUNG

intartkel
int anzahl
inteinzelpres

In the representation with UML (Unified Modeling Language), the association between classes by boxes (classes) lines is shown (relationships) and numbers (multiplicities).The multiplicity specifies how many objects are involved in the relationship:
 [image: image2.png]Klasse Kunde Klasse Adresse

The figure above expresses that owns an object of class customer an object of class Address: "A customer has an address".The filled diamond indicates that it is an existence dependent relationship (composition).

a) A customer MUST have an address, a customer without an address does not exist.
b). A customer has exactly one address.
c.) The address can not exist without the associated customers.

Implementation

A simple association is created by the primary class (customer) is declared, an attribute, which consists of a reference to an object of class dependent (address) exists.

class Customer {
 Address addr;
 ...
}

The associated address object is created in the constructor. The moment when a customer object is instantiated, thus the associated address object is created.

Customer () {
addr = new Address ();
}

The address object is actually not part of the customer object, but exists as an independent object. But only because the customer object has a reference to the Address object can only be accessed from it. Since the dependent address object has no reference to the associated clients, it is not possible for the one-sided relationship, to go from the address back to the customer.

class Address {/ / dependent class

 private String street;
 private String location;
 private int tel;

public Address () {/ / constructor
System.out.println ("Location:");
 this.ort In.readWord = ();
 System.out.println ("Address:");
 this.strasse In.readWord = ();
 System.out.println ("tel:");
 this.tel In.readInt = ();
 }

 public void get () {
System.out.println ("Address");
 System.out.println ("Location:" + location);
 System.out.println ("Address:" + street);
System.out.println ("tel:" + tel);
 }
}

/ /

class Customer {/ / Independent Class

 private String name;
public address addr; / / Reference to the address object

 / / Constructor

 public Customer () {
 System.out.println ("Customer Name:");
 this.name = In.readWord ();
this.adr = new Address () / / new address object
}
 /

 public static void main (String args []) {

 One customer = new Customer ();
 eins.adr.get () / / Access to address object
 }
}

Note: The relationship between classes is only a lasting, stable relationship, if it is at the class level (not within a method) declared. The dependent object can only be known in all the methods of the primary class and accessible if it is an object variable that is declared at the class level and not a local object that is declared within a method. This is particularly important when the SWING programming a common mistake that leads to difficult to trace null-pointer exceptions.

2) Multiple unilateral Association

If the primary object has more secondary objects, then one speaks of a multiple-sided association.
 [image: image3.png]—!

viele Rechnungen
(sekundzr)

A non-existence would be dependent relationship forAs that between a customer and an invoice. Because a customer does not necessarily have an account, he can also be a potential customer (prospect). A non-existence dependent relationship is called aggregation and represented in UML by an empty diamond.
 [image: image4.png]Kunde

Rechnung

In this example, a zero-to-multi-relationship (0 .. *) is shown. This means that a customer can not have to many bills.

Multiple relationships are usually displayed in the object-oriented programming with arrays.In the class customer, there is an attribute, which consists of an array of bills.

class Invoice {

 private int artnr / / Model
 private int count; / / Number of items
 Unit price private double / / Price

 public Invoice () {
 System.out.println ("Model:");
 this.artnr In.readInt = ();
 System.out.println ("Number:");
 this.anzahl In.readInt = ();
 System.out.println ("Price");
 this.epreis In.readDouble = ();
 }
}

Because an array in Java belong to the object data types has its production (in the customer's constructor) done in several steps:

1. The name of the array is declared as an attribute
2. In the constructor, the array is created (using new).
3. Then, in a loop, the individual elements of the vector (invoice objects) are allocated with new.

class Customer {

 private address addr;
 private account [] calculations / / 1: Name of the vector

 / / Constructor

 public Customer () {
 this.adr = new Address ();
 this.rechnungen = new account [3] / / 2: Invoices vector

 for (int i = 0; i <rechnungen.length, i + +)
 calculations [i] = new account (); / / 3: Invoice objects
 }
} / / End customer

The accounting attributes of customers are addressed by their index. Of accessor methods should be used (in the class statement):

eins.rechnungen [0] = artnr In.readInt ().;

 [image: image5.png]

[image: image1.png]ein Kunde
(primr)

eine Adresse
(sekundar)

Page 5
