Fundamentals of Object Oriented Programming - Packages 
Packages 
 
Complex Java applications usually consist of many classes to work together to fulfill the purpose. During program development, it is common utility classes (ie, well-tested classes that are not changed often) to outsource in child directories. In the parent directory is only the main class with main, is launched from which the entire application. 
 
Thus, the user must search not only for the correct main class to start the program, a batch file can be placed in the parent directory that calls the main class. Alternatively, a Java archive starttfähiges be generated, which is set up so that will automatically find and start the main class (see next chapter Java archives).
 
Problem: Java finds classes only if they are in the current working directory or on the classpath (CLASSPATH folder).Although it is possible to assist the compiler by setting this system variable when searching for packages - but this requires administrative privileges, which the user has not usually. 
 
In addition, the classpath variable works somewhat differently on Windows and Linux. Absolute pathname or drive names (such as C: or D :) are generally not allowed in Java packages. This is understandable since, for example, distributed applications that run on other people's computers, can ever make any assumption about the operating system or the local directory structure above the current installation directory of the application (and should).
 
Solution: The organization of files in Java packages (packages) allows to store together related classes in their own "namespace" (directories).The package name must be identical to the name of each directory - they mirror the folder structure.Here come dots instead of the slash (or Backslash). A class is bound to the package name to which it belongs. So that the same classes are clearly identified and clearly distinguish also possibly.
 
If packages are used, then the corresponding development environment that must be prepared to be set up, because the Java compiler can not be found readily capable packages and classes that are located in other directories.Without the help of a development environment is the starting point for the search for packages is always the current working directory of the main class and sub-folders in it closes only one, in the overlying no classes directories are searched by default. An easy way to work without development environment, is to use batch files.
 
The interior of the development environment is usually from the formation of projects andWorkspaces (the term is in each IDE specific).The popular example JCreator uses so-called workspaces to organize packages of an application. Projects or workspaces based on additional information files that allow the compiler also find classes that are located in other directories.
 
Import statement
 
The instruction to search a required class in a particular package is,
 [image: image1.png]import<paketnames <klasses ;





              
 
 
The package name is transferred to the existing folder structure and the required class will be searched for in the specified directory. The statement must be before the start of the class which references an object of the class or package wants to use. Unlike in the include statement in C / C + +, however, are not the classes found "literally" is inserted at this point in the Java program code, but it is included only to note the directory where the class can be found.
 
The import statement can explicitly address individual classes in the package
 
. import <packagename> <class> / / without class.
 
or all existing classes there include:
 
import <packagename>.*;
 
If the class is present in the source code, then it is automatically compiled.
 
Package statement 

 
However, it is not enough to move the helper class in the right package directory - their simple presence in a particular folder does not make them a part of the package. The inserted class must contain an explicit indication to which package they belong to.
 
The statement that a class is added to a packet must, above all other statements (even before import):
 
 [image: image2.png]package<paketname> ;





 
 
 
On the identity of package-names and folder names must be respected.If they differ, then the required class is not found, and there is a note from the compiler that the package name is incorrect.
 
A packet class must be explicitly marked as public, so that they can be accessed from other packages out.Zufriffskennzeichner the public must not be omitted.This also applies to constructors and all the attributes that must be accessed.
 
 
 
Note: In Java, the general rule is that Java source code, which consists of several classes, must contain only one public class marking.If inner classes are used, they must be marked as public.
 
Example:
 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / Main class 
 
import test.Auto;
 
Car class Test {
 
  public static void main (String args []) {
 
    Car my car = new Car ("Mitsubishi", 4);
    meinAuto.gibAus ();
  }
}
 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / This class package must be in a child directory 
/ / Are called test
 
package test;
 
public class Car {
 
    private int seats;
    public brand mark;
 
    public Car (String name, int seats) {
 
        brand = new Brand (name);
        this.sitze = sit;
    }
    public void gibAus () {
        System.out.println ("My" + + marke.name 
                           "Has" + sit + "seats");
    }
 
    / / / / / / / / / / / / / / / / / / / / / / / / / /
    / / Inner class
 
    public class Brand {
 
      public String name;
 
      public brand (String name) {
 
        this.name = name;
      }
 
    } / / End brand
 
} / / End auto
Page 3
