PROJECT: Customer Management

The operation and the internal structure of an object-oriented Java program is shown here on the example of a customer management.The program has all the essential features that belong to an object-oriented program: separation between the participating classes and their attributes and encapsulation methods. An important key feature is the interaction of the classes for the purpose of an orderly and well-planned design of all necessary functions: creating a customer invoice data entry, storage, import and distribution of customer-related data.

First, the program is designed as a console-based application.In the following chapters, this is the basis for a SWING application and later developed into a component-based enterprise application.

The input and output functionality has no graphical elements, but based on input from the keyboard and output to the screen in the form of a simple Menusystems.The class model is kept simple. Between the classes Customer, address and account there are only the following relationships: a customer has an address and several bills.The class customer management is the control class, here the customers are managed in a vector, herein is the control flow of the program in main () with the event loop (switch-case), responding to the keystrokes of the user. The main functionalities are based on the user selection.

The program initially displays a menu selection, which shows the main features. The user can create multiple customers, the program automatically assigns a unique customer number, then asks for the address (city, street, telephone) and data from multiple accounts (item number, quantity, unit price). The total amount of the invoices for each customer is then calculated and displayed with customer data on the screen.

 [image: image32.png]steerungzklasse

main() {
writeFile()

void writeFile() {

Kunde[outFile()

[image: image2.png]

[image: image3.png]

[image: image4.png]

[image: image5.png]

[image: image6.png]

[image: image7.png]String ort
String strasse,

int tel

ADRESSE()
getl)
setl)

[image: image8.png]int artikel,
int anzahl
int einzelpreis

[image: image9.png]

[image: image10.png]

[image: image11.png]

[image: image12.png]

 [image: image13.png]KUNDE

stafic int KAnzahl

intnr;

KunDE() {

[image: image14.png]KundenTest

main) {

3
Kundenobjeke.
Gesamtbetrag
ausgeben

[image: image1.png]

 [image: image15.png]

 [image: image16.png]

Implementation has the relationship between customer and address:
A customer HAS an address:
In class customer an attribute (name) is applied to the class address.
In the constructor, the object of the class address is generated.

Implementation has the relationship between customer and invoice:
 A customer has several accounts:
In class customer will attribute as a vector of bills

(Only name) is created.
In the constructor of the accounting objects are created in a loop.

 [image: image17.png]public

K {
static Kunde] K
main() {
menu)

}/f endmain

statc void speichern(){

)

static void lesen(){

}

I

Rechmangll

™

Konsolenanwendung
Kundenverwaltung

Example customer management: 1 Storing data in text format

The serialization of objects in plain text format is described using the example of a customer management program. (The entire Java program project is included in the script Kundenverwaltung.doc). The specified steps describe the main functions for saving and re-reading of objects.

Preamble:
Not only the customer objects themselves, but also all associated with them objects can be saved and restored. It must address, and remain (many different) receive invoices from a customer. This task can be solved by the associated objects of each customer (an address object and multiple account objects) are embedded in the customer data.It should be noted that there is associated objects that occur only once (address), and those that can occur more than once (invoices). In the latter case, information must be given, which indicate the number of embedded objects.

[image: image19.png]

1 At the very beginning of the file the total number of stored objects must be saved.This is necessary so that the program knows the number of customer records before reading it in again and can proceed accordingly to suchExample, to specify the size of the vector of customer objects.

2 The order of the attributes must be clearly defined.This is necessary because in a pure storage of text (as opposed to XML storage) no meta-information on the membership of an attribute are available. The assignment of a value for a particular attribute can only be determined on its position within the data sequence. It is advisable to maintain the order that is specified in the relevant class declaration.

3 The embedded (associated) objects are stored as attributes of a customer.Since the address of each customer occurs only once, it is sufficient simply to save their attribute values.The number of invoices is not fixed.They may be different for each customer. Therefore, a counter must be included with each customer, indicating the number of the corresponding bills.

Proposal for a workable definition of the data sequence

Number of customers (int) [available once at the beginning of the file]
Customer number (int) / / A PER LINE ATTRIBUTES
Customer name (string)
Address.Location (String)
Address.Street (String)
Address.Phone (string)
Number of all invoices for that customer (int)

Account.Item (int)
Account.Quantity (int)
Account.Price (double)

Implementation

The input and output functions are distributed to all participating classes. Here, the car model of the application must be considered. The control class contains main () with the client and an output vector and a read-in function. This call to the output method for each customer object. This in turn calls the output method for each object and for each invoice address object.

[image: image20.png]ADRESSE

veid autrile() |

rechn[i] outrile()
}

[image: image21.png]

[image: image22.png]RECHNUNG

veid autrile () {

[image: image23.png]

[image: image24.png]// KUNDE. outFile{ Xundendaten in Datei schreiben
public void outFile()
Outprintln) // speichert Kundennr
Outprintln // speichert Kundenname
this NSUEDY /4. Adress-Funktion auf
Outprintin(this. GnzReching); //5: Anzahl der Rechnungen

For(int i =0;1 < this anzRechng; i+)

EEENIBUEIE, // 6. Rechiuing Funktion

[image: image25.png]// KundenTest java:
public static void writeFile()

ifout.done() {
1

for(int 1=0; 1 < Kunde kundenanzahl; i+ {

kunden[i] GutFilel)j 3.

outclose()
T e e e e R
felse

Outprntln("Komte nicht gechrisben werden!”)

Izt
12

[image: image26.png]// RECHNUNG. outFile(zchnungsdatenin Dateischreiben
publicvoid outFile() {

Outprintin(this
Outprintln(this
Outprintin(this

[image: image27.png]// ADRESSE. outFile(ciressdatenin Dateischreiben
publicvoid outFile() {

Outprintln(this
Outprintln(this
Outprintin(this

The function for file output (writefile () is located in the controller class KundenTest.java (not in one of the object classes).She opens the specified file, stores the number of customers and the customer then goes through Vector. The actual data are stored in the methods of the class CUSTOMER, ADDRESS and STATEMENT.

[image: image28.png]DateneinesKundenobjekts
Kundennr
Name
Adresse
ort
strasse
Telefonnummer
Anzahl Rechnungen
Rechnung 1
Artikelnr
Menge
Einzelpreis
Rechnung 2
Artikelnr
Menge
Einzelpreis

1 Open the file.

2 Storage of the object counter. This indicates the number of customers in the customer Vector are currently available. The variable can be used by KUNDE.kundenAnzahl KundenTest.java because it is a public static variable (class variable in customer).

3 The customer vector is run through and it is for each customer, the method outFile () called.This saves all the attributes of each client object.
[image: image29.png]

4 The method outFile () in class Address is called and returns the address data (associated address object):

[image: image30.png]KUNDE
veid autrile() |

adroutile()

}

5 Thereafter, the program flow returns to the Customer class and stores the current number of bills (anzRechng).

[image: image31.png]

 6 Finally, the OutFile () method Class account called that issues the invoice data:

 [image: image18.png]writeFile() KUNDE
w0 .
o e[outrile) s o rechnli] RECHNUNG
S]
utapen KNummer, e i
S i s
i

Schaubild: Speichern der Daten eines Kunden

Overall flow:

The storage function writefile () writes all data from all clients in the specified sequence and in the correct data type in the file.The lines need not be provided with an explicit line end marker, as the IO tools used detect the end of the line independently.

Note: There are data formats in which the end of a data group is marked by a reserved character for it. Usually a comma is used: CSV (comma separated values).In our example, a special marker is not necessary, as the In and Out functions recognize the end of line.

Re-reading of objects

Restoring an object means nothing more than the restoration of all the attribute values, together with associations (customer data, address data and billing information) in the correct order and with the right content.

The practical recovery of the stored data is performed in several steps:

1. Read all customer, address, and account attributes in exactly the same order as they have been stored.

1. Each read-record (indidviduelle combination of customer data, address data and billing information) is assigned to a newly created object. The identity of the attributes is the guarantee that it is the same object as before saving.

When re-reading of stored data is to be noted, that may overwrite and delete existing objects in memory.

The creation of a new object (customer) is (similar to reading from the keyboard) by a constructor.This must be structured somewhat differently, as there is no screen or keyboard issues queries are useful when reading from a file. The constructor contains only Einlesebefehle and attribute assignments and must be different from the constructor for keyboard-generated objects through the parameter list (Customer (int) place Customer ()).

The upload function in the customer administration first reads the total number of stored customer and can then read all customer data in a loop.

public static void readFile () {
 In.Open ("test.dat");
 if (In.done ()) {
 Kunde.kundenAnzahl In.readInt = ();
 for (int i = 0; i <Kunde.kundenAnzahl, i + +)
 customer [i] = new Customer (1);
 In.close ();
 Out.println (Kunde.kundenAnzahl + "customers read ... \ n");
 Else}
 Out.println ("\ n \ tNo customer file available!\ N ");
}

