Fundamentals of Object Oriented Programming -   Dynamic arrays
 
Dynamic arrays
 
The static arrays described in the previous chapter have a serious drawback: its size can not be adjusted during the program runtime. In programming practice, this often tempts to allocate more memory than needed. 
 
Dynamic arrays in contrast, offer the following advantages:
 
· The size adjusts automatically when adding new elements. 
· You are not type-specific and can therefore absorb various object types. 
 
There are several types of dynamic data containers, which are referred to in the Java class libraries as collections (collections).The commonly used class vectors is described below.
 
 
Vector class
 
The use of the Vector class requires the integration of
 
 [image: image6.png]VectostVel newVector) // neuer dmamischer vektor





 
 
 
The implementation of a vector is not an array, but a linked list - a data structure that can change their size at runtime, and also can hold different types of objects.
 
 
The Vector class provides four constructors: 
 
1 public Vector ()
2 public Vector (int anfangsGroesse)
3 public Vector (int anfangsGroesse, int increment)
4 public Vector (Collection coll)
 
During the creation of a vector, the initial size can be specified.The storage space for the items will be reserved for a growth factor (which is executed when the initial size is exceeded) or an existing collection (which will be transformed into a dynamic vector) can be passed optional.In most cases, the parameterless constructor will suffice.
[image: image1.png]import java.util Vector;





 
 
 
 
 
 
Element access
 
· Elements of a vector are principally as objects of class Object Treatment (root of the Java class hierarchy).It can no elementary data types (int, double, char) are stored - may need wrapper classes (Integer, Double, etc) are used (see example below).
 
· On re-reading of an element of a vector a down-conversion (downcast) must be made ​​in the appropriate output type.There's a downcast principle type uncertain (see Chapter class inheritance / polymorphism), the conversion products must be used carefully (egB. Type test with instanceof).
 
· The element access is always done with methods and is therefore not as comfortable as in a static array whose elements on the index (in square brackets) are addressed. The access methods are synchronized (protected against concurrent access), which somewhat reduces the access speed. 
 
 
Storing elements in a Vector
 
There are five methods may be used for storing items in a vector.
 
	void
	add (Int index, Object element)
Adds the specified object at the specified index position in the vector a.

	 boolean
	add (Object element)
Appends the specified object to the end of the Vector.

	 void
	addElement (Object element)
Appends the specified object to the end of the Vector and the Vector increases.

	 boolean
	addAll (Collection c)
Adds all the elements of the specified Collection to the end of the Vector.

	 boolean
	addAll (int index, Collection c)
Adds all the elements of the specified Collection at the specified position in the Vector.


 
 
The insertion methods differ insert at a stroke into a vector by the ability to specify a (zero-based) index position at which to insert the item, or by the possibility of an existing collection (collection) of objects. 
 
The easiest method is usable add (Object), the appends the specified object to the end of the Vector.If the object is to be inserted at a specific point of the vector, the method add (index, object) used.The method addElement (Object) depends on the object to the end of the Vector and the Vector increases around the same time the constructor (optional) specified increment.
 
 
 
 
Different types of objects in a Vector
 
The following example shows how different types of objects are inserted into a vector.First, objects are created by the student and the type of add () method appended to the end of the Vector.The objects are automatically converted to objects of class Object.Then more objects of type Integer at specified index positions are included ..
 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / /
 
import java.util.Vector;
 
class Student {
 
     private int matriculation;  
     private double income;
     private String first name, last name;
 
     public Student (String v, String n, int m, double s) {
        first name = v;
        last_name = n;
        income = e;
        Matrikelnr = m;
     }
     public void gibAus () {  
        System.out.println ("Student" 
                           This.vorname + + "" + last_name);
        System.out.println ("Salary:" + income);
        System.out.println ("matriculation" + Matriculation);
        In.read ();
     }
}
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
 
class {DynVektor1
 
public static void main (String args []) {
 
   One student = new Student ("Hanna", "Smith", 1223, 2000.0);
   Two student = new Student ("John", "Meier", 2331, 3000.0);
 
   StVek vector = new Vector ();
 
   . stVek add (one);
   . stVek add (two);
 
   for (int j = 0; j <12 j + +)
      stVek add (j, new Integer (j)).;
 
System.out.println ("Length:" + stVek size ().) / / 14
  }
}
 
The vector now consists of fourteen elements.
 
 
 
 
 
 
Reading elements from a Vector
 
For reading stored objects from a Vector is available in the Java API, numerous methods that can not all be explained here, the API documentation (see link above) lists them completely. The most common and easiest to remember methods are:
 
	  Object
	get (int index) 
 Returns the element at the specified index position.

	  Object
	elementAt (int index)
Returns the element at the specified index.

	  Enumeration
	elements ()
Returns an enumeration (enum container) that contains all elements.


 
When reading is to be noted that each vector extracted from an element is always from the base object type.
 
 [image: image2.png]Object o = stVekget (i} // oder:
Object o = stVek element At (i)





 
 
 
This object can of course only be used effectively after it has been converted back to its original concrete class type class (in the above example, student).This is possible through a downcast.
 
A downcast must always be protected so that no non-implemented attributes or methods can be addressed (please see Chapter polymorphism).This can most easily be done by the instanceof operator:
 
[image: image3.png]if{o instanceof TUDENT) {

}




          
 
 
This operator (no way!) returns the Boolean value true if the object is of the specified class type. If not, the following conversion instruction is skipped. If you do, then you can safely convert,
 
 [image: image4.png]STUDENT t = (STUDENT)o;





 
 
and a class-specific methods are called:
 [image: image5.png]t.gibAus();





 
 
 
In the following example, the vectors of each element is passed (for loop), where each element is extracted, checked for its class type (INTEGER or student) and then output accordingly.
 
 
Reading an element from a Vector of type checking and conversion to the correct source type (downcast):
 
 
for (int i = 0; i <stVek.size (); i + +) {
 
Object o = stVek.get (i);
 
if (o instanceof Student) {
 
                 Student t = (Student) o;
                 t.gibAus ();
 
                 ((Student) o) gibAus (). / / Alternative!
            }
 
if (o instanceof Integer) {
 
                 Integer k = (Integer) o;
 
                 Out.println ("Integer:" + k);
 
                 Out.println ("Integer:" + (Integer) o) / / Alternative
            }
   }
 
 
 
 
 
 
 
 
Page 5
