Fundamentals of Object Oriented Programming - Methods -
 
 
 
 
 
 
Methods
 
 
 
 
In its formal structure Java methods correspond to the functions in C and C + +. A method is used to put a frequently used sequence of instructions with a name and offer to call. A method can take any number of values ​​(passing parameters), but only a single return value return. A method must be called to ensure that it comes to execution explicitly.
 
Unlike C and C + + Java methods must be defined within a class, because in principle no external declarations are allowed.A method is therefore always to a certain class and can be used only by objects of this class. Objects of other classes can use methods only under certain circumstances - namely when it is static method and if there is an association between the classes (see class relations).
 
 
 [image: image3.png]void
void|
int zeige(stringname); // Fehler!





 
class Student {
 
    String name;
    String matriculation; 
 
[image: image1.png]Methoden miissen prinzipiell innerhalb einer Klasse deklariert
und definiert werden.




 
 
 
 
 
 
}
 
 
 
 
 
 
 
 
 
 
 
 
 
There are other differences which are listed in the following table are presented
 
 
	 
C function
	 
C + + function
	 
Java method

	 
separate statement block outside of main ()
 
 
void function can not contain a return
 
Transfer either
by-value or by-reference
 
 
is invoked as a separate function
 
requires no object
 
	 
Independent statement block 
Or:
Method of a class 
 
Void function can not contain a return
 
Transfer either
By-value or by-reference
 
is invoked as a separate function
Or:
Requires object
 
	 
Possible only within a class
 
 
 
void method may include return
 
Transfer determined by data type
 
 
Independent method must be marked as static,
Requires otherwise object


 
 
 
 
 
As a method always belongs to a certain class, she knows basically only the attributes and methods that belong to this class. Methods of other classes can be called only under certain circumstances:
 
· If an association with the other class consists 
· Static methods can be called using the class name,
· Methods within the class hierarchy (super.methode ()).
 
 
An object method is called on the object name
 
Object.method ();
 
A class method (static method) is called using the class name
 
Klasse.methode ();
 
 
 
 
 
 
 
 
 
Method call - Signature 
 
 
The method call must match exactly the signature of the method. The signature of a method consists of the name and the transfer parameters. The return type is not among them.
 
[image: image2.png]voidsetName§tringn) {

this.namen;

}





 
 
 
 
 
In this example, the first two methods of a class are seen as different and separate callable methods. The third method, which differ only in the return type (forAs int) is different and otherwise has the same parameters, is not accepted by the Java compiler, but considered as prohibited Redeclaration an existing method.
 
 
 
Transfer parameters
 
In Java there is no way the type of parameter passing in the method call (by-value or by-reference) to determine, as there is no address and pointer operator.Java depends mainly on the type of the given data type (value type or object type) and sets the transfer type appropriately. 
 
a) Passing a value type
 
The transfer parameter of a primitive value type (int, double, char, boolean, see the following chapter) automatically call-by-value, ie, it creates a local copy of the original.If this value is changed in the way this has no automatic effect on the original. Value types must therefore always by return (return) will be returned to the caller, if changes are to be permanent.
 
 
 
b). Passing an Object data type
 
Object data types are automatically added by-reference.This means that changes to the object do not need to be returned by return value to the caller, but are executed immediately. 
 
 
 
 
 
Return type 
 
 
In Java, can a void method contain a return statement that terminates the execution of the statement section.The return statement may, however, return a value. 
 
Example
 
integer class Test {
 
    static void checking (int j) {/ / void method with int parameter
 
        if (j == 0) {
            System.out.println ("Incorrect: You have entered 0");
            Cancel / / Method; return
         }
 
         System.out.println ("You have entered the correct number:" + j);
    }
    / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
 
    public static void main (String a []) {
 
                System.out.println ("Enter a number (not NULL) a");
        int i = In.readInt ();
examining (i) / / Funktionsauruf
    }
}
 
 
 
 
If a return type is specified, the return type must exactly match this.There will be no implicit type conversion, which could lead to an erroneous result, but the compiler reports an error.
 
Double class Test {
 
static int checking (double j) {
         System.out.println ("You entered:" + j);
         return j;
    }
 
    public static void main (String a []) {
        System.out.println ("Enter a decimal number");
        In.readDouble double i = ();
System.out.println (Check (i));
    }
}
 
ERROR: Can not implicitly convert double to int
              Or possibly loss of precision
 
Note: The code shown here is used to read in the comfort class "In", which is described in more detail in a later chapter. To successfully translate the class "must In.class "are copied to the current working directory.
 
Several methods with the same
 
Within a class there must be more of the same methods which differ in their signature. A different return type alone is not sufficient as a distinguishing factor. The compiler searches the appropriate method and executes it. This also applies to constructors.
 
class test {integer
 
static void checking (double j) {
         System.out.println ("You entered double:" + j);
         return;
    }
 
static void checking (int j) {
         System.out.println ("You entered int:" + j);
         return;
    }
static void checking (int j, double k) {
         System.out.println ("You entered INT:" + j);
         System.out.println ("and DOUBLE" + k);
         return;
    }
    public static void main (String a []) {
 
        System.out.println ("Enter an integer");
System.out.println ("and a decimal");
        int i = In.readInt ();
        double j = In.readDouble ();
        examining (i);
        checking (j);
        checking (i, j);
    }
}
Page 5
