Fundamentals of Object Oriented Programming - Constructors

The Constructor

A constructor is a special method which normally is not explicitly called - it will be executed automatically in the moment when an object of its class is created. The actual content of a constructor (its commands) can be determined by sourcecode – eg. to initialize attribute values (see below: constructor arguments).

A constructor has the following features:

· Its name is identical to the class name,
· Its access identifier is public,
· It has no return type (not even void).

A constructor is not allowed to have a return value because he is already occupied. This „invisible“ return value is nothing else than the ADDRESS of the new object and this address will be automatically returned to the reference. A constructor that was mistakenly provided with a return type will not be recognized by the compiler as a constructor, but instead treated as "normal" method.

The screen output of the following example program provides identical addresses. It proves that the object‘s address is represented inside the class through a this-pointer and that this address will be returned to the reference.

 [image: image1.png]Adresse des Objekts

class Student {

public Stifent

Objekt

 class Student {

 public Student () {

 System.out.println ("THIS:" + this);
 }
}

/

class Test {

 public static void main (String [] args) {

 Student one = new Student ();

 System.out.println ("Reference:" + one);
 }
}
 [image: image2.png]THIS: Student@7cedol
Referenz: Student@7cedo1

In a class there must be not necessarily exist a constructor. If there is no constructor defined, a default constructor is automatically generated (without passing arguments with an empty body) and added by the compiler.This can be proved by decompiling a Java class.

Note: When there is a constructor having parameters (see below) no default constructor will be generated by the compiler.

Sequence of the object creation process

Creating object attributes are applied in principle before the execution of the constructor.This makes sense, because otherwise could not work with them in the constructor. It is possible in Java (in contrast to C + +) to explicitly show attributes with initial values. Such pre-initialized object attributes are not specific, but apply to ALL objects alike. Of course, the default values ​​can be changed later, and then only apply to the object. An initialization attribute level is recommended only in cases when all objects are actually the same attribute values. Then, however, it makes more sense this with the static qualifier to be provided (see chapter access identifier).

1. Attributes are created and initialized
2. Constructor is executed.

class Student {

String name = "empty";

 public Student () {

System.out.println ("Name is" + name);
 }
}
/ /

Student class Test {

 public static void main (String [] args) {

 One student = new Student ();
 Two student = new Student ();
 }
}

 [image: image3.png]Nameistleer
Nameistleer

Page 3
	class Student {

			public Student () {

				// some commands...

			}

	}

