
Fundamentals of Objectoriented Programming - Introduction

System class library (API)

Java includes an extensive collection of predefined classes (Java API library), in which
both the entire object hierarchy and frequently used function classes are implemented.
This API library is organized in strict hierarchical order, and each class has its specific
place in it. Since Java is an object-oriented language, the API library too is based on its
classmodel, in contrast to the Windows API library (WinAPI) that offers purely procedural
(non-objectoriented) functioncalls.

The Java API library can be thought of as an upside-down tree, from its root (class
Object) descend all the branches. Also selfwritten classes are automatically included in
this hierarchical order and inherit certain basic functionalities and behaviour from the
root class Object.

The Java compiler and the Java interpreter using the API library to create the basic data
types and object to define Nutzklassen and invoke its functionalities. Without the API
library no matter how small Java program could be compiled or executed. The compiler
and the interpreter itself are quite small programs (a few kB), whereas the API library is
complex and extensive. It is available in a compressed archive (several megabytes).

The different versions of Java that have been developed since its beginning differ also
(and especially) by the extent of their API library. The latest API versions offer additional
classes and functionality that complement and extend the previous versions. Basically,
the API versions are backward compatible, meaning that they provide at least the
functionality of all previous versions, but adding new and advanced classes and
functions. There are always a few classes that still exist in the hierarchy, but should not
be used because they have proved to be defective or unsuitable (deprecated =
rejected).

Object

A selfdefined
class

Java-Systemclasses (API)

Java-API-classes

Fundamentals of Objectoriented Programming - Introduction

Runtime archive (compressed API Library)

Thus, the Java compiler and the Java interpreter at any time have access to the API
library, it is anchored to a fixed location of the SDK directory structure. This path must
not be made known through explicit indication folder because it is firmly encoded in the
compiler and interpreter. The API library is compressed in a special Java archive
subfolder in the jre / lib directory of the Java installation directory before.The
name of the archive is rt.jar, where rt is the abbreviation for runtime (runtime library)
is.

In MS-Windows, for example:

The rt-archive can be opened with any zip utility (WinZip or WinRAR), whereby the
internal directory structure of the archive is visible:

JAVA-Installation: \ jre \ lib \ rt.jar

eg. c:\ jdk1.4 \ jre \ lib \ rt.jar

Fundamentals of Objectoriented Programming - Introduction

The most commonly used classes are located in the folder named java:

Fundamentals of Objectoriented Programming - Introduction

It is obvious that the rt-archive is structured in folders that are named based on their
functionality. Thus, all standard classes are available, for example, in the subfolder java
/ lang (language) that are needed by every standard Java program.

Integration of API classes in a Java program

When the compiler or interpreter has to use an API class that does not belong to the
default directory (java/lang), its exact directory location must be made explicitly known.
This can happen in two ways.

1. The class path directly

The path to the directory location is specified in the program directly with the use of the
required class. A directory or a class within the folder structure of the library API is
mapped by using the usual dot operator in Java instead of the slash.Thus, in a Java
application, for example, the class vectors are used:

. . .
java.util.Vector vec = new java.util.Vector(100);
. . .

Fundamentals of Objectoriented Programming - Introduction

The path must be given naturally with each use of the API class.

2. Abbreviated path with import

If an API class is often used in a program, then at the beginning of the source code
(before any other code) use the import statement with the path and name of the API
class is specified.

The import statement makes the path to the API class known, so that it is later found
without explicit path.The class can then be added at any time directly in the Java source
code.

The import statement is not to be confused with the well-known statement of the
programming language C / C++ include insofar as it defines only paths and no source
code.

import <Pfad>;
z.B: import java.util.Vector;

. . .
Vector vec = new Vector(100);
. . .

	JAVA-Installation: jre lib rt.jar

