
Fundamentals of Objectoriented Programming - Introduction

Conventions for Java sourcecode

Guidelines and conventions for the external form as well as suggestions for naming and
documentation in Java programs are laid down in the document „Code Conventions for the
JavaTM Programming Language“.

http://www.oracle.com/technetwork/java/codeconvtoc-136057.html

Format design (style)

The formatting of source code is not relevant to the Java compiler - within certain limits. He
only knows a few immutable rules for correct spelling and syntax (expression and
combination of instructions). The parser is not interested in linebreaks, which are important
for the human reader. For the parser (code analyzer) a token is important to distinguish the
different units:

 Spaces between units (type declarations and variable names)
 Semicolon at the end of a statement
 Correct provisions of pairs of brackets

In addition, of course, the compiler checks the spelling of units (instructions, key words). A
misspelled statement can not be executed and produces an error message. User-defined
data types (objects, variables, methods) are not allowed to use these reserved keywords
(see table).

 abstract default if private this

boolean do implements protected throw

break double import public throws

byte else instanceof return transient

case extends int short try

catch final interface static void

char finally long strictfp volatile

class float native super while

const for new switch

 continue goto package synchronized

http://www.oracle.com/technetwork/java/codeconvtoc-136057.html

Fundamentals of Objectoriented Programming - Introduction

In general there is freedom of the external design of the source code. This shows up in the
form of various programs in publications. There are different views about the particular
arrangement of braces. Each programmer has to find out what kind appears to be better to
her. Keep a style that shows the nesting of statement blocks (by indentation) clearly.

Recognized guidelines

In software companies detailed guidelines for formatting are common. They serve to unify
sourcecode for larger projects involving multiple programmers at work. All participants
must adhere to these rules. In addition, some formal guidelines have been coined that all
programmers should note:

 Appropriate documentation
 Consistent adherence to the selected or specified formatting style

 Designation

For naming variables and methods in the following lexical conventions have proven:

Class names should be nouns that describe the nature and importance of the class as
short and to the point.The first letter is capitalized.You can also consist of several words
that are strung together without spaces or underscore. The first letter of each word is
capitalized.

My class First class
class college student

Method names should be verbs whose first letter is lowercase.Mated parts of a name
without spaces / underscores concatenated with the first letter of each word is capitalized.

gibAus void ()
holMirDasSofortHer int ()

Variable names should be short and self-describing.The first letter is lowercase.Most letter
names are used for count variables: i, j, k, m, for letters c, d, e

int i;
char c;
float own wide;

class myClass class myClass {
{

void myMethod() void myMethod() {
{
} }

} }

Fundamentals of Objectoriented Programming - Introduction

 Constant names written with capitals, components are distinguished by underscore.

static final int min_width = 4;
static final int max_width = 999;
static final int GET_THE_CPU = 1;

Constants must not be instantly initialized :

static final int min_width;
. . .
min_width = 4;

Position of the type declarations

The arrangement of declarations in a source text is checked by the compiler. There are
two different sets of rules for the positioning of type declarations. A distinction is made
between the two levels, which are also relevant for the type of data types (see data types):

 Components at the class level (object variables and methods)
 Variables within a statement block (local variables)

a) Class components

Class-level attributes and methods can be declared at any point. Two types frequently
encounter in example programs:

1) First attributes, then methods declarations

2) First methods then attributes:

 class myClass {

 int a; // Attributes
 double b;

 void getter() { // Methods
 }
 void setter() {
 }
 }

 class myClass {

 void setter() { // Methods
 }
 void getter() {
 }
 int a; // Attributes
 double b;
 }

Fundamentals of Objectoriented Programming - Introduction

The position of the attributedeclaration at the class level is indifferent to the compiler. The
human analysis of a class is facilitated if the attributes (which are indeed referenced in the
methods) are located at the beginning of the classcode. In the following chapters, the first
variant (first attributes, then methods) is preferred.

Position of variable declarations in a method

In principle, variables can be declared within a method at any point, in any case, of course,
before the instructions that operate on them. It is not absolutely necessary (although
recommended) to declare variables at the very start of the instruction block (as in C).The
same is true for constants.

Here the preferred example of formatting :

class myCircle {

 int ganzZahl; // Attributes
 double kommaZahl;
 String name;

 void methode() { // Methods
 ganzZahl = ganzZahl + 3;
 kommaZahl = kommaZahl + 2.14;
 }
}

 void perimeter() {
 int a; // Variable
 final double PI = 3.14; // Konstante
 a = 3;
 System.out.println(„Perimeter “ + (a*PI));
 }

	Constants must not be instantly initialized :
	Position of the type declarations

