
Fundamentals of Objectoriented Programming - Introduction

Principles of Programming with Java 

Java  is  a  platform  independent  programming  language.  This  important  attribute  was
introduced by the separation of the development from the execution process through the
inception of intermediate code (bytecode). 

 On the developer's system Java sourcecode is compiled to bytecode using the Java
SDK (Software Development Kit).

 Java bytecode is transferable and can be executed on any client machine and any
combination of operating system and processor type as long as there is present a
locally installed Java JRE (Java Runtime Environment). 

So it is getting clear that Java bytecode plays a central role in the overall programming
system.  Bytecode  may  be  regarded  as  a  special  assembler  code  which  contains
instructions  (microcode)  for  the  Java  Runtime  Environment.  It  contains  the  hardware-
independent  representation of  the original  Java sourcecode.  This  intermediate code is
suitable for transmission in network environments because of its pure binary form. In a
certain sense the Java Runtime Environment may be depicted as a <CPU in software> for
executing bytecode. Bytecode can be decompiled so that the original source code may be
noticed.

The  multistep  development  process  (compiling-transferring-testing/executing)  obviously
complicates Java programming altogether  – at least compared to languages such as C or
C++, although the use of an integrated development environment (IDE) as Eclipse and
NetBeans facilitates and summarizes the necessary steps. 
On the other hand this multistep development process exactly meets today's demands for
distributed  applications  on  the  Internet  (client-server  model).  The  server  is  the  host
machine that provides a service (or program), the client (customer) is the machine who is
able to use/execute the service. 

Two different Java systems are offered by Java manufacturers (Oracle, OpenJDK etc.)

 SDK for development and testing Java bytecode (includes Compiler and Runtime)
 JRE for running Java bytecode (only Runtime)

Developer's Computer
Java Compiler (SDK)

Client's Computer
Java Runtime (JRE)Java bytecode

Development Execution



Fundamentals of Objectoriented Programming - Introduction

To summarize the Java development process:

On the developer's computer system the Java sourcecode is written and compiled by the
Java  compiler  into  bytecode.  The  developer's  computer  system  thus  needs  a  Java
Software Development Kit (SDK) which includes a Runtime Environment to run and test
Java programs.

On the client side a JRE (Java Runtime Environment) is needed to bring the bytecode to
execution.  This  may  happen  on  any  computer  system,  which  has  a  Java  interpreter
installed (Windows, Mac, Unix …). The JRE contains an interpreter and a complete API
system library that contains all the standard classes - but no Java compiler. 

JAVA
Interpreter JAVA

Interpreter

JAVA
Interpreter

UNIX Mac
Windows

JAVAC
Compiler

Java-sourcecode

bytecode
CLASS file



Fundamentals of Objectoriented Programming - Introduction

Structure of a Java program

The strict object-orientation of Java has to be respected when creating source code. Since
a  class forms  the  uppermost  hierarchical  level, all  other  components  (instructions,
methods and definitions) must be defined inside a class. Very few instructions are allowed
outside a class (e.g. import, package). The exact definition and usage of Java classes
will be explained in a later chapter.

class Student {                            

      public:
           char vorname[20];
           int matrikelnr;
      public:
           void gibAus() {
            ...           
           }
}; ///////////////////////////////////////////

void main() {
Student* eins = new Student();

}

C++ 
sample class

main ( ) 

Located OUTSIDE
of the class

 class Student {

String vorname;
int matrikelnr;

void gibAus()    {
...

}
     public static void main(String args[])  {

 Student eins=new Student();
     }
 }     

main ( ) 

Located INSIDE
of the class

JAVA
sample class



Fundamentals of Objectoriented Programming - Introduction

main ( )

Just as in C the execution of a Java program starts with a function called main(). The
main method must be located in a class and follows a specific syntax. As it is directly
executable by the JRE without any existing object it must be declared as  static. It is
public and void (does not return a value) because it is executed by the JRE and not by
the operating system. 
Main ( ) may receive parameters from the command line and therefore it must declare a
string array for handling the arguments. Although this String array actually need not be
used in main, it must always be specified. For more detailed explanation about arrays and
their attributes / methods see later chapter on Java arrays.

// Example program: main with parameter transfer 
// from the command line

class Test {

public static void main (String [] args) {

for (int i = 0; i < args.length; i++ )

System.out.println (args [i]);
}

}

 

> javac Test.java 
> java Test HELLO WORLD

HELLO
WORLD


	Interpreter
	Interpreter
	Interpreter

	Compiler
	bytecode
	CLASS file

